Beam Stability at Light Sources – Course Outline USPAS – June 16-20, 2003

J. Carwardine, G. Decker and R. Hettel

with contributions from N. Sereno and J. Sebek

Monday AM

- 1. Introduction (Decker)
- 2. History of Synchrotron Radiation Sources (Hettel)
 - History of SR development
 - 1st and 2nd generation sources
 - SR experiments
 - Beam stabilizing systems
 - SR flux and brightness
 - 3rd generation sources and improvements
 - 4th generation sources
 - Stability requirement preview

Monday PM

- 3. Properties of Synchrotron Radiation (Decker)
 - Bending magnet SR
 - space-time dependency
 - spectral properties
 - power
 - flux
 - spectral brightness
 - Insertion device SR
 - spectral properties
 - power
 - flux
 - brightness

4. Essentials of Accelerator Physics (Decker)

- Single particle equations of motion transverse
- Basic lattices
- Particle beam phase space
- Betatron tune and phase
- Magnetic deflections and orbit distortion
- Localized orbit bumps
- Single particle equations of motion longitudinal
- Longitudinal phase space parameters
- Transverse-longitudinal coupling
- Electron beam emittance, propagation of emittance ellipse
- Emittance vs. Courant-Snyder invariant
- Electron beam size and divergence
- Photon emittance and diffraction limit
- Undulator photon properties
- Photon beam dimensions and brightness

Tuesday AM

5. Time and Frequency Domain Representations (Decker)

- Time
 - bunch structure
 - time scales
 - instrumentation
- Frequency
 - introduction to sampling and Fourier transforms
 - o digital Fourier transform
 - o cross-correlation function
 - o auto-correlation function
 - Parseval's theorem
 - accelerator characteristic frequencies
 - instrumentation
- Power spectral density
- Betatron and synchrotron oscillations in space and time

Tuesday PM

6. Beam Stability Requirements for Light Sources (Hettel)

- SR beam parameters
- SR beam line configurations
- Stability criteria for storage rings
- SR sensitivity to electron parameters
- Electron beam properties
- Stability in phase space
- Stability time scales and averaging
- Photon-electron relationships
- Intensity stability
- Photon energy stability and resolution
- Timing and bunch length stability
- Lifetime
- Summary of stability requirements for storage rings
- Stability in linac FELs and ERLs
- Conclusion

Wednesday AM

7. Sources of Beam Instability (Decker)

- Magnetic
 - field errors
 - quadrupole focusing properties
 - quadrupole misalignment amplification factor
 - beam-based alignment and BPM offset determination
- Ground motion
 - ground wave propagation properties
 - accelerator/ground motion resonance condition
 - ground motion velocity power spectral density
 - ATL law
- Magnet/girder motion
- Gravity solar/lunar tides
- Power supplies (correctors)
- Top-up transients
- Insertion devices
- RF system

Wednesday PM

8. **Orbit Correction Principles** (Carwardine)

- Reasons for orbit correction
- Orbit deflection from single source
- Orbit correction techniques
- Local orbit control
- Global orbit correction
- Response matrix
- Response matrix inversion
- Selection of BPMs and correctors
- SVD
- Least squares matrix inversion pseudo inverse
- Weighted least squares inversion
- Global orbit correction process
- Orbit correction to orbit feedback

9. **Sampling of Continuous-time Signals** (Carwardine)

- Sampling theory
- Aliasing
- Anti-alias filters
- Digitizer performance trade-offs
- Sample-rate conversion (digital down-sampling)
- Bandpass sampling
- I/Q detector analog and digital

Thursday AM

10. Beam Stability Measurements (Decker)

- Charged particle beam pickup electrode types
 - buttons
 - striplines
 - cavity BPMs
- Analog processing techniques
 - switched-button, narrowband
 - amplitude-phase conversion
 - log-ratio processing
- Photon beam position monitoring

11. Systematic Effects (Decker)

- RF beam position monitoring
 - intensity dependence
 - fill pattern dependence, top-off effects
 - timing/trigger stability
 - microwave modes in vacuum chambers
 - electronics thermal drift
 - mechanical instability (thermal expansion)
- X-ray beam position monitoring
- Vacuum chamber eddy currents

12. **Digital Receivers for BPM Processing** (Sebek)

- Desired BPM functions
- Beam signal spectrum
- Digital receiver
 - principles of operation
 - numerical accuracy
- SPEAR 3 implementation design
- Proposed FNAL implementation

Thursday PM

13. **Orbit Feedback Dynamics** (Carwardine)

- Simple orbit correction algorithm as feedback loop.
- BPM filtering and processing
- Corrector dynamics and eddy current effects
- Regulator design matters
- Performance metrics for regulator design
- Orbit feedback system as a noise-shaping filter.
- Running separate DC and AC feedback systems
- Impact of different corrector dynamics (leading to a dilemma

Friday AM

14. **Orbit Feedback Implementation** (Carwardine)

- Digital vs. analog implementation
- Architectures
- Reflective memory
- Reducing global algorithms to many local algorithms
- APS datapool implementation
- ID compensation feed-forward
- Word length and quantization effects
- Real-time data analysis
- Orbit motion source identification

15. Introduction to Multibunch Instabilities and Feedback (Sereno)

- Coupled bunch modes
- Wakefields and impedance
- Types of instabilities
- Longitudinal coupled bunch modes
- Robinson instability
- Transverse coupled bunch modes
- Options for eliminating multibunch instabilities
- Landau damping
- Feedback systems
- Suppression of closed orbit for feedback systems
- Bunch-by-bunch and mode-by-mode feedback

Friday PM

16. Review of Problem Sets